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The response of turbulence to a periodic forcing of the Reynolds number is studied.
The turbulent flow is produced in a closed geometry between two counter-rotating
disks. The time series of both the global injected power and the local velocity are
measured. It is found that the injected power fluctuations exhibit resonances for
well-determined values of the modulation frequency, making it possible to estimate
a turbulent cascade time. For modulation periods larger than the measured cascade
time, the response of the velocity fluctuations is simply proportional to the modulation
of the forcing. For high-frequency modulations, the velocity fluctuations are strongly
damped: their amplitude decreases as the inverse of the modulation frequency.

1. Introduction
Turbulence is a problem of immense practical importance, but some of the most

basic questions about it still remain to be answered (Sreenivasan & Antonia 1997).
In the usual cascade picture of turbulence, kinetic energy is injected at large scales
and transported through the energy cascade towards smaller scales, at which it
dissipates (Richardson 1926; Kolmogorov 1941). The dynamics of this transfer remain
a challenge in the fundamental comprehension of turbulence. For instance, there is
no precise information about the time scales involved in this transfer. Only for
the particular case of decaying turbulence have time scales been measured and
scaling laws with the Reynolds number proposed (Smith et al. 1993). For stationary
forced turbulence, the typical cascade time scale can be easily estimated by direct
numerical simulation from the time delay between the global instantaneous kinetic
energy and enstrophy (see Pumir 1996). In experiments, however, such instantaneous
measurements are not yet possible.

In order to be able to estimate the cascade time experimentally, Lohse (2000)
proposed recently of study ‘kicked’ turbulence, in which the response of the turbulent
flow to a periodic external forcing is examined. Heydt, Grossmann & Lohse (2003)
extended this study, and investigated the case of a small modulation of energy
injection theoretically, using a mean-field type of approach. They found that for
slow modulations (having a period larger than the characteristic time of the energy
cascade), the system simply follows the driving modulation with the same amplitude.
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The periodic forcing merely makes the Reynolds number of the flow vary periodically,
too. The more interesting finding was that, for modulation periodicities that are
smaller than the typical cascade time, the response amplitude of the system decreases
and resonances are observed in the response of the system. The resonances, if
observable experimentally, therefore contain information about the typical time scale
of energy transfer in the cascade.

Besides the fundamental interest of this situation for the understanding of
turbulence, many natural or engineering turbulent flows are driven periodically.
Classical examples are geophysical flows periodically driven by tides and seasons,
blood flows periodically driven by the heart, and flows in combustion chambers of
engines. The effects of flow modulation of Poiseuille-type flows in either smooth
pipes or channels have been studied extensively (e.g. Gerrard 1971; Ramaprian & Tu
1983; Mao & Hanratty 1986; Lodhal, Sumer & Fredsoe 1998 and references therein).
However, these studies address the effect of modulation on a turbulent boundary layer.
This is very different from bulk turbulence, to which the theories of Lohse (2000) and
Heydt et al. (2003) apply. More generally, the effect of a large-scale modulation on
turbulence remains an almost unresolved issue since most theoretical studies address
the problem of constant energy injection (Sreenivasan & Antonia 1997).

In this paper, we study the effect of a modulation of the integral-scale Reynolds
number on turbulence using a set-up for which the global energetic properties of the
flow are given by the bulk turbulence only (Cadot et al. 1997): the dissipation in the
boundary layers near the walls is negligible. This is achieved using a closed cylindrical
cell filled with water; the turbulence is generated using two counter-rotating stirrers
(Labbé, Pinton & Fauve 1996; Titon & Cadot 2003), one at each end of the cylinder.
It is the rotation frequency of the stirrer that gives the Reynolds number of the flow,
and by modulating the rotation frequency, the Reynolds number is modulated.

We provide experimental evidence for the existence of resonances in modulated
turbulence that have, to the best of our knowledge, not been observed before. The
results compare satisfactorily to the theoretical investigations of Heydt et al. (2003)
which allow the computation of the turbulent cascade time. This article is organized
in three sections. the next section briefly presents the experimental set-up and the
measurement technique. The results for both the dynamical and the static response
constitutes the § 3. Finally, in the last section we provide a discussion and conclusions
about the time scales found in the turbulence response.

2. Experimental set-up
In experiments on turbulence, flows are generally driven either at constant velocity

or by a constant force. For instance, pipe flows are realized by either setting the
flow rate (constant velocity forcing) or the pressure gradient (constant force forcing).
In both cases, the energy injection is not constant, and the injected power randomly
fluctuates due the feedback of the turbulence produced on the forcing (Titon & Cadot
2003). We first measure the injected power. To characterize the turbulent flow, we
then measure the velocity (and its fluctuations) in the turbulent bulk of the flow.

Titon & Cadot (2003) have described the experimental cell in detail. The turbulence
is generated in a closed cylindrical cell (V = 11 l) between two counter-rotating
stirrers (disks with blades) of radius R = 8.75 cm spaced two disk diameters apart.
A DC servomotor regulated by a servo amplifier (Parvex) drives each stirrer
independently. The motors are configured to keep the disks rotating at a fixed
frequency, independently of the torque exerted by the turbulence on the disks. This
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is done by using a tachymetry feedback loop, a regulation system that changes the
torque delivered by the motors to maintain the imposed angular velocity. The time
response of the control loop is 0.05 s, implying a high-frequency cutoff of 20 Hz (see
Titon & Cadot 2003 for further details). For lower frequencies, the image of the
current at the output of the feedback loop gives an instantaneous measurement of
the torque. The mechanical power supplied by the motors is simply given by the
product of the current at the feedback output (i.e. torque) and the tachymetry signal
(i.e. angular velocity).

The total power injected into the flow P (t) is computed by summing the contribution
of each servomotor’s mechanical power:

P mech
1 (t) = Ω1(t)Γ1(t), P mech

2 (t) = Ω2(t)Γ2(t), (2.1)

and subtracting the power due to the torques of friction losses Γ s
1 (Ω1) and Γ s

2 (Ω2)
which were measured independently in the empty cell (full of air), as well as the
inertia of the forcing devices, for which a correction is necessary. We have

P (t) = P mech
1 (t) + P mech

2 (t) − Ω1(t)Γ
s
1 − Ω2(t)Γ

s
2 − 1

2
I1

Ω2
1 (t)

dt
− 1

2
I1

Ω2
2 (t)

dt
, (2.2)

where Ω1 and Ω2 denote the angular velocities of the two forcing devices. In the
following, we use the injected power per unit mass defined as εI (t) = P (t)/M where
M is the total mass of water in the cell.

We utilize a hot-film probe (Dantec) to measure the modulus u of the local velocity;
its square is a measure of the local turbulence kinetic energy. The probe is placed
halfway between the stirrers, 3 cm from the wall in the bulk of the flow. We cool the
water in the cell between data acquisitions so that the temperature of the fluid is in
the range 20 < T < 21◦C, in order to have reliable hot-film measurements.

The flow is continuously stirred, the two stirrers being in counter-rotation. The
Reynolds number for the stationary regime is defined as Re= Ω0R

2/ν, where Ω0/2π
is the rotation frequency of the stirrers and ν the kinematic viscosity of the fluid. For
the present experiment, the flow is fully turbulent: Ω0/2π =5Hz and Re = 240 000.
The corresponding microscale Reynolds number is Rλ ∼ 650 (see Arneodo et al. 1996
for a study of the small-scale velocity statistics in the present flow configuration). A
modulation of amplitude aΩ0 and frequency fm of the forcing is applied:

Ω1(t) = −Ω2(t) = Ω(t) = Ω0(1 + a cos(2πfmt)). (2.3)

We vary the modulation frequency from 0 to 20 Hz with a constant amplitude of
a = 0.1. In addition, we vary the modulation amplitude from 0.05 to 0.34 for two
frequencies of modulation: 0.5 Hz and 5 Hz.

The rotation frequency Ω(t), the torques, Γ1(t) and Γ2(t) of each motor, and the
hot-film probe signal are simultaneously recorded by a data acquisition board with
a sampling rate of 5 kHz. For each modulation frequency fm we recorded a file of
1.5 million points corresponding to a duration of 300 s.

3. Results
3.1. Dynamical response

To study the dynamical response of the system, we correlate the fluctuations of
the energy injection rate εi(t) and the local velocity modulus u(t) with those of the
modulated rotation frequency Ω(t). In the following, we consider the normalized
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Figure 1. Phase average of: the normalized velocity modulus fluctuations δu′ (thin line,
left vertical axis); the normalized angular velocity fluctuations δΩ ′(medium thick line, left
vertical axis); the normalized injected power fluctuations δε′

i (thick line, right vertical axis).
(a) fm = 0.5 Hz; (b) fm = 2Hz; (c) fm = 3.5 Hz; (d) fm = 5Hz. Phase averages are taken over
one period Tm = 1/fm of the angular velocity of the stirrers and are repeated four times for
better accuracy of the results.

fluctuations defined as

δx ′(t) =
x(t) − 〈x〉

〈x〉 , (3.1)

where x is either εi , u, or Ω , and 〈 〉 denotes the time-averaged quantity.
Figure 1 shows a direct comparison between δΩ ′, δε ′

i and δu′ (obtained by averaging
over one modulation period) for different modulation frequencies: 0.5, 2, 3.5 and 5 Hz.
It is seen that for low frequencies of modulation, the signals are modulated in the same
way; both δu′ and δε ′

i simply follow the slow modulation of the rotation frequency.
For higher modulation frequencies, the response of the velocity fluctuations reduces
considerably: the turbulent system is no longer able to follow the modulation. The
phase difference between the injected power and the velocity shifts by a value close
to π/2 between each of the modulation frequencies shown in figure 1.

In order to quantify the effect of the modulation on the turbulence, we perform a
Fourier analysis and extract the modulation mode from each time series. We treat
the data in the following way. The time series x(t) is separated in five blocks of
300 000 points each. A fast Fourier transform is computed on each block (the
frequency resolution is 0.017 Hz). Characteristic amplitude spectra of the velocity
Au(f ) and the injected power AεI

(f ) are shown in figure 2. For both cases, turbulence
modulated at fm = 2 Hz is compared to the unmodulated turbulence. For both the
injected power and the velocity, modulation of the turbulence leads to the appearance
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Figure 2. Amplitude spectra of (a) the velocity modulus and (b) the injected power for
modulated (at fm = 2 Hz) and unmodulated turbulence. For comparison, the modulated case
is shifted up by one decade. We only show the data for frequencies lower than 20Hz in (b)
for which the power measurements are reliable. The form of the spectra is different for the
velocity (a) and the power (b) because the injected power is a global quantity; consequently
its spectrum decreases quickly beyond the mean rotation frequency: Ω0/2π = 5 Hz (Labbé
et al. 1996; Titon & Cadot 2003). The amplitude spectrum for the velocity extends up to the
dissipative scale of the turbulence, but the dissipative scale is not resolved due to the cut-off
frequency corresponding to the probe size. Note as well that the velocity measurements are
performed at a location for which the Taylor hypothesis is not valid; therefore we do not
retrieve the scaling laws usually found for the spectrum (Sreenivasan & Antonia 1997).

of a clear peak around the modulation frequency in the spectrum. The amplitude of
the modulation mode Ax(fm) is measured directly from the peak of the amplitude
spectrum Ax(f ). The phase at the modulation frequency, Φx(fm) is obtained from the
phase spectrum of x(t); the phase of the rotation frequency of the stirrers is taken
as the origin. Finally, the mean value and the statistical error are computed from the
values of amplitudes and phases obtained from the 5 different blocks.

Dimensionless response amplitudes Āx(fm) are normalized by the time-averaged
signal defined as

Āx(fm) =
Ax(fm)

〈x〉 . (3.2)

The amplitude response for the power and the local velocity is displayed in figure 3.
The amplitude of the angular velocity of course remains constant around the imposed
value: ĀΩ = a = 0.1, shown as the solid line. The amplitude of the local velocity
Āu also has a constant magnitude close to 0.1, but only for modulation frequencies
lower than fcross ≈ 3 Hz, implying that for these frequencies the turbulent velocity
field follows the imposed modulation. However, for higher frequencies, the response
amplitude is damped as 1/fm (figure 3a, inset).

A surprising result is that the amplitude response of the power in figure 3(b) is not
monotonic and presents two clear maxima at 2Hz and 5 Hz separated by a minimum
at 3.5 Hz.

The phase shift φu between the local velocity and the imposed modulation is
shown in figure 4. It decreases linearly with increasing modulation frequency. This
linear behavior defines an intrinsic time scale τint: φu(fm) = 2πτintfm, so that we find
τint ≈ 0.25 s. The phase shift between the injected power and the imposed modulation
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Figure 3. Dimensionless amplitude response at the modulation frequency vs. the modulation
frequency of (a) rotation frequency of the disks (continuous line) and local velocity modulus
(triangles, inset: log-log plot of the velocity modulus.); (b) injected power (open circles).
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Figure 4. Phase response at the modulation frequency vs. the modulation frequency of the
local velocity modulus (triangles) and the injected power (crosses).

presents a very small oscillation. The phase shift is close to zero in the vicinity of the
maxima of the power amplitude at (at 2 and 5 Hz) and takes a negative value for the
minimum of the power amplitude (at 3.5 Hz). However, in comparison to the phase
shift between the local velocity and the forcing, this effect is small.

So far we have quantified the amplitude and phase of the response for a given
modulation amplitude. We now investigate the response to a change in the magnitude
of the modulation amplitude. It is found that the response usually varies linearly with
the amplitude of modulation. This is shown in figure 5 for modulation frequencies 0.5
and 5 Hz. The amplitude response to the velocity modulus varies linearly up to large
values of the modulation amplitude (figure 5b). Note that the dependence cannot be
linear around zero because the amplitude response of turbulence at fm is not zero
without modulation (see the spectra for unmodulated turbulence in figure 2).

The phase shift of the velocity remains constant for all values of the modulation
amplitude. These results also show that the intrinsic time scale found in figure 4 is not
affected by changing the modulation amplitude. On the other hand, the amplitude
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Figure 5. Amplitude and phase response vs. the modulation amplitude for modulation
frequencies of fm = 0.5 Hz (open symbols) and fm = 5Hz (filled black symbols). (a) Amplitude
response (circles) with linear approximation, and phase response (triangles) of the velocity
modulus. (b) Amplitude response of the injected power with linear approximations. The linear
approximation of the modulation at fm = 0.5 Hz (dashed line) has a slope of 3 (see discussion).

response of the injected power (figure 5b) remains linear only as long as a < 0.2. For
larger values of the modulation amplitude a nonlinear saturation is observed.

3.2. Global response

We now focus on the effect of the modulation with a fixed amplitude a = 0.1 on
the global (time-averaged) response of the system. We investigate the behaviour, as
a function of the modulation frequency, of both the average injected power and the
local turbulent kinetic energy, the latter being given by the square of the measured
velocity.

Figure 6 shows the mean global injected power 〈εI 〉 and the mean turbulent intensity
〈u2〉 as a function of the modulation frequency. Globally, the modulation results in
an increase in the mean injected power. However, around 3.5 Hz, we observe a region
for which the modulation does not result in a significant increase. This minimum
corresponds to the minimum in the amplitude response observed in figure 3(b).

For the kinetic energy, although the scatter of the measurements is rather large, we
can still observe that the region around 3.5 Hz corresponds to a global increase of
the turbulent energy. In addition, the data of figure 6(a) are strongly correlated with
the data of figure 6(b): each increase (resp. decrease) of injected power coincides with
a decrease (resp. increase) of the kinetic energy. Since the uncertainty in the kinetic
energy is small compared to the scatter of the data points, it is possible that there is
an additional fine structure in figure 6(b), whose origin could be related to the eight
blades fitted on each stirrer.

4. Discussion and conclusion
We have measured the phase and amplitude response of a turbulent system subjected

to a modulation of the Reynolds number. Here, we first compare our measurements
to dimensional arguments deduced for non-modulated turbulence. We subsequently
interpret the different measured turbulence time scales in the light of the theory of
Heydt et al. (2003). Finally we discuss the consequences of the modulation for the
mean dissipation and mean kinetic energy of the turbulence.
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Figure 6. (a) Mean global injected power per unit mass vs. the modulation frequency. The
solid line represents the corrected power expected by a simple dimensional argument of
equation (4.2). The dashed line represents the measured injected power 〈ε0〉 without any
modulation. (b) Mean local turbulent intensity vs. the modulation frequency.

For the stationary non-modulated regime, the injected power is proportional to the
cube of the angular velocity (Cadot et al. 1997) as expected from the (Kolmogorov
1941) dimensional arguments. Naively, one therefore expects that for the modulated
system:

εI (t) = ε0(1 + a cos(2πfmt))3, (4.1)

where ε0 denotes the mean injected power without modulation. From this expression,
the mean injected (or dissipated) power should be

〈εI 〉 = ε0(1 + 3a2/2). (4.2)

These estimates give a good order of magnitude for the turbulence response. On
figure 6(a), equation (4.2) describes the average value of the power satisfactorily. The
dynamical response of the injected power at the low modulation frequency fm = 0.5 Hz
(figure 5b) also corresponds to the value expected from the simple argument of
equation (4.1). In this expression, the amplitude for the modulation mode fm, is
ĀεI

(fm) = 3a + o(a2). However, the simple dimensional arguments given above for
the injected power cannot explain the non-trivial response resulting in the existence
of extrema in both injected power (figure 3b, figure 6a) and kinetic energy response
(figure 6b). We now discuss the different timescales found in the measurements.
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In the experiment, the forcing is applied at the stirrers only and not homogeneously
in the bulk. A consequence is that, in addition to the cascade time, there is a large-
scale convective time due to the momentum transport from the stirrers to the bulk of
the flow. This effect then introduces a time lag between the modulation at the stirrers
and the local modulation at the location of the hot-film probe. This time lag depends
on the mean flow, i.e. on Ω0. The phase shift φu between the local velocity and the
imposed modulation shown in figure 4 decreases linearly with increasing modulation
frequency. This behaviour defines a constant time lag which does not depend on the
modulation frequency. Thus, this time lag, which we defined above as an intrinsic
time scale for the turbulence τint ≈ 0.25 s = 5

4
2π/Ω0, is consistent with a large-scale

convection time.
A second time scale for the turbulence can be deduced from the local velocity

response (figure 3a). We find that the response amplitude is constant for modulation
frequencies lower than fcross = 3 Hz. For higher frequencies, a low-pass filtering occurs
and the response amplitude decreases as (1/fm): the velocity no longer follows
the imposed modulation. The crossover frequency between the constant response
and the (1/fm) decrease defines a characteristic time for the stationary turbulence:
τ0 = 1/fcross ≈ 0.33 s = 5

3
2π/Ω0.

The low-pass filtering behaviour observed in the velocity fluctuations is in very
good agreement with the theoretical expectations of Heydt et al. (2002). They predict
a constant response of the kinetic energy fluctuations below a certain crossover
frequency and then a (1/fm) decrease above. In terms of fluctuations, the velocity
modulus fluctuations that we measure should depend linearly on kinetic energy
fluctuations as long as the modulation amplitude is small (similarly to the injected
power fluctuations which depend linearly on the velocity fluctuations as shown in
figure 5b). Hence, our finding confirms the theoretical expectations for the response
of the kinetic energy fluctuations.

The cascade time can be deduced from the response maxima of the injected power,
as suggested by Heydt et al. (2003). The presence of extrema can be physically
interpreted as the consequence of the delay between the energy injection and the
energy dissipation. This delay is due to the time taken for of the energy from the
large scale to be transferred to the small scales, say the cascade time, τC . Hence, for
the modulated case, the phase shift between injection and dissipation is 2πfmτC . Since
the global kinetic energy variations of the flow obey

dE(t)

dt
= εI (t) − εD(t), (4.3)

extrema in the response are expected each time energy injection and energy dissipation
are either in or out of phase. In our experiment, the amplitude response of the
injected power presents two clear maxima at 2 and 5 Hz, separated by a minimum
at 3.5 Hz. These appear to be exactly the response extrema found theoretically. The
distance between the two maxima, 	fm = 3 Hz, corresponds to the cascade time
scale of the turbulence τC ≈ 0.33 s = 5

3
2π/Ω0. Heydt et al. (2003) found that the

characteristic time scale of turbulence τ0 defined by the crossover in the turbulence in-
tensity response (figure 3a) is also the time defined by consecutive maxima of
resonances. This is exactly what we find: τC ≈ τ0. The characteristic time τC thus
appears to be the first measurement of the cascade time of a stationary turbulent
flow.

We now turn to the global (time-averaged) response of the system. Since the
turbulence is stationary, the mean injected power equals the mean dissipated power.
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The noteworthy feature in figure 6(b) is that the increase in the kinetic energy is
simultaneous with a decrease in the injected (i.e. dissipated) power. This correlation
is especially strong at the modulation frequency of 3.5 Hz, where both the mean
dissipated power (figure 6a) and the injected power fluctuation (figure 3b) are
minimum. However, for fm = 3.5Hz, it is surprising to find that the turbulence,
even that perturbed by a large-scale modulation, dissipates the same amount of
energy as the unmodulated turbulence (figure 6a) and contains more kinetic energy
(figure 3b). From a practical point of view, this finding suggests that by modulating
at a resonance frequency, possibly a more efficient mixing can be achieved with the
same energy input.

In conclusion, we have succeeded in measuring the cascade time experimentally in
a closed flow system. It would be worthwhile to compare our results to measurements
in open flow geometries (i.e. grid or jet turbulence) which can be more homogeneous.

LPMMH de l’ESPCI is UMR 7636 of the CNRS, LPS de l’ENS is UMR 8550 of
the CNRS, associated with the University Paris 6 and Paris 7. We thank Detlef Lohse
and Anna von der Heydt for helpful discussions.
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